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Abstract. Earthquakes in mountainous areas can trigger thousands of co-seismic landslides, causing significant damage, 

hampering relief efforts, and rapidly redistributing sediment across the landscape. Efforts to understand the controls on these 10 

landslides rely heavily on manually mapped landslide inventories, but these are costly and time-consuming to collect, and their 

reproducibility is not typically well constrained. Here we develop a new automated landslide detection algorithm (ALDI) based 

on pixel-wise NDVI differencing of Landsat time series within Google Earth Engine accounting for seasonality. We compare 

classified inventories to manually mapped inventories from five recent earthquakes: 2005 Kashmir, 2007 Aisen, 2008 

Wenchuan, 2010 Haiti, and 2015 Gorkha. We test the ability of ALDI to recover landslide locations (using ROC curves) and 15 

landslide sizes (in terms of landslide area-frequency statistics). We find that ALDI more skilfully identifies landslides than 

published inventories in 10 of 14 cases when ALDI is locally optimised, and in 8 of 14 cases both when ALDI is globally 

optimised and in holdback testing. These results reflect both good performance of the automated approach but also surprisingly 

poor performance of manual mapping, which has implications not only for how future classifiers are tested but also for the 

interpretations that are based on these inventories. We conclude that ALDI already represents a viable alternative to manual 20 

mapping in terms of its ability to identify landslide-affected image pixels. Its fast run-time, cost-free image requirements and 

near-global coverage make it an attractive alternative with the potential to significantly improve the coverage and quantity of 

landslide inventories. Its simplicity (pixel-wise analysis only) and parsimony of inputs (optical imagery only) suggests that 

considerable further improvement should be possible. 

1 Introduction 25 

Landslides are important as agents of erosion and as a dangerous hazard (Marc et al., 2016; Froude and Petley, 2018). Large 

earthquakes or rainstorms can trigger thousands of landslides, redistributing tonnes of rock over distances of hundreds or 

thousands of metres within a few seconds (Li et al., 2014; Roback et al., 2018). These landslides can cause significant damage, 

hamper relief efforts, and rapidly redistribute sediment across the landscape. Efforts to understand the drivers, behaviour, and 

consequences of these landslides rely heavily on landslide inventories, in which landslide locations are mapped either as points, 30 

lines, or polygons, usually associated with one or more assumed trigger events. Landslide inventories are important because 
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they document the extent and impact of landslides in a region, informing disaster response and recovery (Williams et al., 2018); 

they capture the distribution, properties, and (through predictive models) drivers of landslides (Guzzetti et al., 2012, Tanyas et 

al., 2019); they train and evaluate models of landslide susceptibility, hazard, and risk (Van Westen et al., 2006; Reichenbach 

et al., 2018); and they enable geophysical flux calculations central to the study of landscape evolution and the global carbon 35 

cycle (e.g., Hilton et al., 2008; Marc et al., 2016). Landslide inventories were traditionally generated from expensive and time-

consuming site visits (e.g., Warburton et al., 2008), severely limiting the number of landslides that could be mapped and thus 

the scale of enquiry. However, they are now increasingly collected remotely based on interpretation of satellite or aerial 

imagery, allowing the compilation of much larger datasets (e.g., Li et al., 2014; Roback et al., 2018).  

Imagery provides an opportunity for rapid mapping over wide areas but is subject to some important limitations. For optical 40 

imagery, which depends on reflected solar energy reaching the sensor, cloud and shadow can obscure the ground surface. 

Active sensors, such as radar, that operate at wavelengths that are not reflected by cloud suffer from other issues (e.g., radar 

layover and shadowing) and their images are only recently being incorporated into operational landslide mapping approaches 

(e.g., Konishi and Suga, 2018; Burrows et al., 2019; Aimaiti et al., 2019; Mondini et al., 2019). Images may not be available 

for the study area over the time window of interest, and - when they are available - they can be costly to acquire. In steep or 45 

high-relief topography, images can suffer severe geo-rectification errors (Williams et al., 2018), which is particularly 

problematic for landslide mapping because these are the areas of most interest. Imagery is becoming increasingly available 

across a very wide range of spatial and spectral resolutions but there remains a trade-off between resolution and cost, with 30 

m imagery freely available globally with a 14-day revisit time (e.g., Sentinel 2, Landsat 8) while sub-metric resolution data 

can be acquired on demand but at a cost of 101-104 USD/km2 (e.g., Worldview, Pleiades). 50 

Landslides are typically identified in imagery either by automated classification, manual mapping, or some hybrid of the two. 

Manual mapping, although much faster than site visits, remains very time consuming over moderate to large areas (Galli et al., 

2008), particularly for co-seismic inventories, which can involve digitising 104 to 105 landslides (e.g., Xu et al., 2014; Harp et 

al., 2016). It also requires comparison of pre- and post-event images to identify change and to avoid conflation of landslide 

rates related to the trigger event with those before or after the event (e.g., Hovius et al., 2011; Marc et al., 2015). Automated 55 

classification can considerably speed up this process but is complicated by other factors, including: the range of possible 

landslide sizes and geometries; the non-unique signatures of landslides relative to roads, buildings, or other features; and the 

difficulty of excluding pre-existing landslides (Parker et al., 2011; Behling et al., 2014). Automated landslide classification 

has been demonstrated predominantly using high-resolution imagery and requires a high level of tuning, thus it is not 

necessarily transferrable from one region or event to another. Imagery can be combined with other sources of information 60 

(e.g., slope inclination from DEMs) to remove some false positives, where a location is incorrectly classified as a landslide 

(Parker et al., 2011). This can improve classifier performance but can also generate spurious correlation when interpreting the 

results (e.g., landslide susceptibility with slope inclination). Some authors have adopted hybrid approaches; for example, Li et 

al. (2014) applied manual checking to the earlier automated mapping of Parker et al. (2011). 
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As a result of these issues, our database of landslide inventories is limited in number and biased towards the most spectacular 65 

trigger events. This point is most easily illustrated by examining earthquake-triggered landslide inventories since in this case 

the trigger event is generally very clearly identifiable in time and its footprint is well defined in space.  Of the 326 earthquakes 

known to have triggered landslides between 1976 and 2016, only 46 have published landslide maps (Tanyas et al., 2017). For 

225 earthquakes the existence of co-seismic landslides was known from news reports and witness testimony (Marano et al., 

2010), but no reliable quantitative or spatial landslide data are available (Tanyas et al., 2017). Many other earthquakes have 70 

likely triggered landslides, but these have gone unreported because they occurred out of human view. Between 1976 and 2016 

there were ~6500 earthquakes sufficiently large (>Mw 5), shallow (<25 km) and near to land (<25 km) to trigger landslides 

(based on Marc et al., 2016). This suggests that the existing set of co-seismic landslide inventories is a small subset (<15%) of 

those earthquakes known to have triggered landslides and a tiny subset (<1%) of those likely to have triggered landslides. 

To extend the number of landslide inventories requires a reduction in the cost of inventory collection, both in terms of imagery 75 

expense and mapping time. We hypothesise that recent improvements in satellite data management (e.g., data cubes) and 

computing capabilities (e.g., cloud computing) have made it possible to collect automated landslide inventories of comparable 

quality to manual mapping, and at a fraction of the cost, due to reductions in both imagery cost and mapping time. Imagery 

cost could be reduced by using cheaper, lower resolution imagery, while mapping time could be reduced by using automated 

detection rather than manual mapping. However, these savings will only represent value for money if they can deliver 80 

inventories of comparable or superior quality to manual mapping.  

Large amounts of freely-available optical imagery with near-global coverage have been generated by the Landsat and Sentinel 

programmes. Landsat has been running for more than 30 years (since the Landsat 4 launch in 1982), imaging the majority of 

the Earth’s surface at a return time of c. 14 days and at 30 m spatial resolution through the visible and infra-red bands. Landsat 

received early attention as a source of imagery for manual landslide mapping (e.g., Sauchyn and Trench, 1978; Greenbaum et 85 

al., 1995) but has since been largely superseded by imagery with higher spatial resolution, which is often assumed to result in 

more precise landslide mapping (e.g., Parker et al., 2011; Li et al., 2014; Roback et al., 2018). The recent HazMapper 

application of Scheip and Wegmann (2021) is a notable exception, which seeks to leverage the large volume of freely available 

coarser resolution imagery to provide information on vegetation change that can be used to map a range of hazards including 

landslides. It is not clear, however, whether the long time series of coarser-resolution imagery that are now available contain 90 

as much usable information as individual images of finer resolution. 

There have been some attempts at automated landslide detection from Landsat (e.g., Barlow et al., 2003; Martin and Franklin, 

2005). The results of automated detection algorithms have not typically been framed as a viable alternative to manual mapping, 

however, but instead have been compared to a manual map of landslides that is assumed to be more accurate and considered 

to represent the ‘ground truth’ (van Westen et al., 2006; Guzzetti et al., 2012; Pawłuszek et al., 2017). Automated or hybrid 95 

approaches still need visual interpretation for calibration, sometimes over large areas (e.g., Ðuric et al., 2017) and there remains 

a perception in the landslide community that such techniques are neither necessarily more accurate (Guzzetti et al., 2012; 

Pawłuszek et al., 2017) nor less time consuming (Santangelo et al., 2015; Fan et al., 2019) than manual interpretation. Given 
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the considerable investment of time and money involved in compiling an inventory, researchers continue to take a conservative 

approach and map by hand. It would therefore be useful to evaluate both automated classification and manual mapping against 100 

a common measure of performance.  

Establishing the performance of an automated classifier against manual mapping requires both establishing the landslide 

characteristics that should be reproduced and establishing the quality of manual mapping with respect to these characteristics. 

Uncertainty in manually-mapped landslide inventories has received relatively little attention. However, the limited number of 

other studies that do quantify landslide inventory error all suggest very weak spatial agreement between different manually-105 

mapped landslide inventories. Ardizzone et al. (2002) found 34-42% overlap between three inventories for the same study area 

(i.e., 34-42% of the area classified as a landslide in one inventory was classified as a landslide in another). Galli et al. (2008) 

found 19-34% overlap for three different inventories and Fan et al. (2019) found 33-44% overlap for three inventories 

associated with the Wenchuan earthquake. Fan et al. (2019) also compared their own inventory to the three published 

inventories and found overlaps of similar magnitude (32-47%) with two inventories but a much closer agreement (82% overlap) 110 

with the third; however, they do suggest a reason for this closer agreement. Importantly, inventories may differ not only in the 

locations of landslides but also in the geometry of the mapped landslides, particularly their area-frequency distributions (Galli 

et al., 2008; Fan et al., 2019; Tanyas et al., 2019). 

This research seeks to: 1) test our hypothesis that an automated detection algorithm applied to time series of lower-resolution 

imagery can deliver inventories of comparable quality to those generated from manual mapping of higher-resolution imagery; 115 

and 2) address the problem that we don’t currently have an objective comparison of manual mapping with automated 

classification. We address the first topic by introducing a new approach to automated landslide detection using Landsat time 

series in Google Earth Engine (GEE). Our approach uses similar data and architecture to HazMapper but is focused on 

landslides in particular and uses an expectation of long- and short-term change rather than a straight comparison of pre- and 

post-event composite images (Scheip and Wegmann, 2021). We address the second by applying this approach to case studies 120 

where there are at least two pre-existing inventories. This allows direct comparison of the inventories that we create (in terms 

of location and size) with multiple versions of ‘ground truth’. The key question: can landslide location and size be reproduced 

more skilfully by our automated approach than by a second manual inventory? 

2 Case study sites 

We choose earthquake-triggered landslide detection to test our hypothesis because: 1) this type of trigger is well constrained 125 

in time and its footprint is well defined in space; and 2) there are several earthquake case studies for which at least two landslide 

inventories are available in order to assess the quality of manual mapping. We choose five earthquake case studies in which at 

least two landslide inventories have been published and where the authors attribute the landslides to the same trigger event 

(i.e., earthquake timing and epicentral location). The mapping times given below are each team’s estimates of the total number 
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of person-days taken to map the landslides in their inventory; this is reported in the metadata associated with that team’s 130 

submissions to the USGS Science Base catalogue of landslide inventories (Science Base Community, 2021). 

The 2005 Kashmir, Pakistan, earthquake triggered >2,900 landslides with a combined area of ~110 km2 across an area of 4,000 

km2 (Basharat et al., 2016). The study area is primarily underlain by sedimentary rock with seasonal snow on the highest peaks 

and has a summer monsoon climate (but is drier than the 2015 Gorkha study site). Landslides associated with the earthquake 

were mapped by Sato et al. (2007; 2017), who estimated that they spent 60 days mapping the landslides using 2.5 m resolution 135 

SPOT 5 optical satellite imagery, and by Basharat et al. (2016; 2017) over 90 days using 2.5 m resolution SPOT 5 imagery 

and field reconnaissance. The inventories of Saito and Basharat contain 2,424 and 2,930 landslides respectively. 

The 2007 Aisen Fjord, Chile, earthquake triggered >500 landslides with a combined area of ~17 km2 across an area of 1,500 

km2 (Sepulveda et al., 2010). The study area is glacially carved valleys in volcanic rock and has a temperate climate with 

seasonal snow throughout and perennial snow at altitude. The associated co-seismic landslides were mapped by Sepulveda et 140 

al. (2010a; 2010b) over 120 days using Landsat images and field mapping, and by Gorum et al. (2014; 2017b) over 5 days 

using 5 m resolution SPOT 5 imagery. The inventories of Sepulveda and Gorum contain 538 and 517 landslides respectively. 

The 2008 Wenchuan, China, earthquake triggered >190,000 landslides with a combined area of ~1000 km2 across an area of 

75,000 km2 (Xu et al., 2014). The study area is primarily underlain by meta-igneous and sedimentary rock with a humid 

temperate climate and snow cover limited to the highest peaks. The associated co-seismic landslides were mapped by Li et al. 145 

(2014; 2017) over 300 days using high (3-10 m) resolution optical satellite images, and by Xu et al. (2014; 2017) over 1200 

days using high (1-20 m) resolution satellite images. The inventories of Li and Xu contain 69,606 and 197,481 landslides 

respectively. 

The 2010 Haiti earthquake triggered >20,000 landslides with a combined area of ~25 km2 (Harp et al., 2016) across an area of 

~4,000 km2. The study area is characterised by steep but low relief valleys cut through sedimentary rock with a humid 150 

temperate climate in which snow is extremely rare and a land-use regime in which the vegetation is rapidly changing. The 

associated co-seismic landslides were mapped by Gorum et al. (2013; 2017a) over 40 days using GeoEye-2 and Worldview-2 

(0.6-1 m resolution) satellite images, and by Harp et al. (2016; 2017) using 0.6 m resolution aerial photographs and field 

mapping. The inventories of Gorum and Harp contain 4,490 and 23,567 landslides respectively. 

The 2015 Gorkha, Nepal, earthquake triggered >24,000 landslides with a combined area of ~87 km2 across an area of 20,000 155 

km2 (Roback et al., 2018). The study area is primarily sedimentary and metamorphic rock with seasonal snow at higher 

elevation and perennial snow and ice at highest elevations. The climate ranges from humid temperate to alpine with a strong 

summer monsoon. The associated co-seismic landslides were mapped by Zhang et al. (2016, 2017) over 20 days using Gaofen 

1 and 2 (1-5.8 m resolution) and Landsat satellite images; by Roback et al. (2017, 2018) using Worldview satellite images 

(0.5-2 m resolution); and by Watt (2016). The inventories of Roback, Zhang and Watt contain 24,915, 2,643 and 4,924 160 

landslides respectively. The Watt (2016) mapping reported here was undertaken for a period of 60 days and involved 

comparing pan-sharpened false colour composites (red, green and near infra-red) derived from Landsat 8 images before and 

after the earthquake. Mapping was undertaken from multiple images to minimise occlusion by cloud, but all images were 
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acquired within one year before and after the earthquake. The majority of the study area was mapped by a single person based 

on comparison of one pre- and two post-event images (from 13/3/2015, 1/6/2015, and 7/10/2015). This mapping was checked 165 

and supplemented by a second mapper using the same procedure to capture previously occluded areas using seven more 

Landsat 8 images. 

3 Methods 

3.1 ALDI classifier: theory 

Landslides remove soil, vegetation, and sometimes bedrock, exposing bare regolith or rock in their scars and spreading a 170 

mantle of sediment over the ground surface downslope. In vegetated areas, landslides are most commonly identified in optical 

imagery by their removal (or occlusion) of vegetation with its distinctive ‘red edge’ spectral signature. Vegetation reduces 

reflected red energy due to vegetation pigment absorption and increases reflected near infra-red energy due to scattering by 

healthy leaves within the canopy (Colwell, 1974). This can be quantified using the normalised difference vegetation index 

(NDVI; Tucker, 1979):  175 

𝑁𝐷𝑉𝐼 =
 𝑅𝑛 − 𝑅𝑟

𝑅𝑛 + 𝑅𝑟
            (1) 

where Rn is spectral reflectance in the near infra-red band and Rr is spectral reflectance in the red band (wavelengths in Table 

1). The light reflected from landslide-affected pixels, whether they are within the scar or runout area, has a spectral signature 

associated with rock or sediment. This differs considerably from vegetation in terms of Rn and Rr, resulting in extremely low 

NDVI values. Therefore, to capture the removal or occlusion of vegetation by landslides we utilise the NDVI change from 180 

before to after the trigger event, which we call dV, and which should be negative for landslide pixels associated with the trigger 

event. This is not in itself a novel approach and is similar to the other NDVI differencing approaches (e.g. Behling et al., 2014; 

2016; Marc et al., 2019; Scheip and Wegmann, 2021). 

In addition, vegetated areas disturbed by landslides regrow slowly (over timescales of years to tens of years). Thus, for 

landslide affected pixels NDVI should not only reduce after the trigger event but also stay low for an extended period (at least 185 

one year). Therefore, we examine a time series of post-event images to calculate a time-averaged post-event NDVI, which we 

call Vpost, and which should be low for landslide pixels associated with the trigger event.  

Averaging over time series of images has the additional advantage that it enables robust estimates of both dV and Vpost even 

for NDVI time series that are both patchy and noisy. The time series are patchy because cloud cover occludes the ground for 

some pixels on some days; this cloud can be removed using filtering algorithms (e.g., Irish, 2000; Goodwin et al., 2013) but 190 

this leaves a gap in the time series. The timing and number of these gaps vary from pixel to pixel, making comparison of NDVI 

for particular dates or images problematic. The time series are noisy because atmospheric conditions alter both incoming 

radiation (e.g., cloud shadow) and that received by the sensor and because ground surface (and especially vegetation) properties 
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will vary over time both systematically (e.g., due to seasonal vegetation growth and harvesting) and randomly (e.g., due to leaf 

orientation). 195 

Since the NDVI is both seasonally varying and noisy, dV and Vpost should 1) normalise for seasonal change; and 2) record not 

only changes in average NDVI but also an indication of the probability that these changes are significant. This probability can 

be estimated by testing the probability that two NDVI samples were drawn from different distributions. Since seasonality can 

be a strong influence on NDVI a paired test accounting for the day of year on which the image was acquired is appropriate. 

Therefore, we also include the probability that NDVI values after the trigger are drawn from a significantly different 200 

distribution than those before the trigger, which we call Pt, and which should be high for landslide pixels associated with the 

trigger event. 

Although low NDVI is effective for identifying the absence of vegetation, it does not uniquely identify landslides since a range 

of other surfaces generate similar signatures, particularly snow and cloud. Cloud cover varies from one image to another, and 

we thus seek to remove cloud-affected pixels from both the pre- and post-event time series. Cloud can be identified based on 205 

its spectral signature, with different types resulting in different signatures. The ‘Landsat simple cloudscore’ function within 

Google Earth Engine returns the minimum of a set of five cloudiness indices using equations 2a-f and parameters in Table 2 

(Earth Engine, 2021). Each index reflects an expectation about cloud reflectance and temperature: they should be reasonably 

bright in the blue band (CIb), in all visible bands (CIv), and in all infra-red bands (CIir); and they should be reasonably cool in 

temperature (CITemp); but they should not be snow (CINDSI): 210 

𝐶𝐼𝑏 =
 𝑅𝑏 − 𝑅𝑏𝑚𝑖𝑛

𝑅𝑏𝑚𝑎𝑥− 𝑅𝑏𝑚𝑖𝑛
           (2a) 

𝐶𝐼𝑣 =
 (𝑅𝑟+𝑅𝑔+𝑅𝑏) − 𝑅𝑣𝑚𝑖𝑛

𝑅𝑣𝑚𝑎𝑥− 𝑅𝑣𝑚𝑖𝑛
           (2b) 

𝐶𝐼𝑖𝑟 =
 (𝑅𝑛+𝑅𝑠1+𝑅𝑠2) − 𝑅𝑖𝑟𝑚𝑖𝑛

𝑅𝑖𝑟𝑚𝑎𝑥− 𝑅𝑖𝑟𝑚𝑖𝑛
          (2c) 

𝐶𝐼𝑇𝑒𝑚𝑝 = 1 −
 𝑇𝑒𝑚𝑝 − 𝑇𝑒𝑚𝑝𝑚𝑖𝑛

𝑇𝑒𝑚𝑝𝑚𝑎𝑥− 𝑇𝑒𝑚𝑝𝑚𝑖𝑛
          (2d) 

𝐶𝐼𝑁𝐷𝑆𝐼 = 1 −
 𝑁𝐷𝑆𝐼 − 𝑁𝐷𝑆𝐼𝑚𝑖𝑛

𝑁𝐷𝑆𝐼𝑚𝑎𝑥− 𝑁𝐷𝑆𝐼𝑚𝑖𝑛
          (2e) 215 

𝐶𝐼 = min (𝐶𝐼𝑏, 𝐶𝐼𝑣, 𝐶𝐼𝑖𝑟 , 𝐶𝐼𝑇𝑒𝑚𝑝, 𝐶𝐼𝑁𝐷𝑆𝐼)         (2f) 

Snow-covered pixels are generally more stable in time than cloud cover, thus we cannot retain sufficient observations to 

calculate stable statistics from these pixels. Instead we identify pixels where persistent snow cover could result in misleading 

statistics using the normalised difference snow index, NDSI: 

𝑁𝐷𝑆𝐼 =
 𝑅𝑔 − 𝑅𝑠

𝑅𝑔 + 𝑅𝑠
            (3) 220 

where Rs is spectral reflectance in the shortwave infra-red band and Rg is spectral reflectance in the green band (wavelengths 

in Table 1). 

We define the Automated Landslide Detection Index (ALDI) as the product of the three parameters defined above. While this 

formulation is arbitrary, it has the advantage of allowing the index to take a minimum value of zero (indicating negligible 
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probability of landsliding) if any of the individual terms is zero. Because we have no a priori knowledge of the relative 225 

importance of each parameter in determining landslide probability, we assume a power-functional form with empirical 

exponents ,  and : 

𝐴𝐿𝐷𝐼 = {(−𝑑𝑉)𝛼  (1 − 𝑉𝑝𝑜𝑠𝑡)
𝛽

 𝑃𝑡
𝜆 ,

                     0                        ,
                 

𝑖𝑓 𝑆𝑝𝑜𝑠𝑡 > 𝑇𝑠𝑛𝑜𝑤 | 𝑑𝑉 < 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (4) 

The likelihood that a pixel is landslide-affected increases monotonically with ALDI, which has upper and lower bounds of 0 

and 1 respectively. Landslide pixels should be characterised by negative dV, indicating vegetation removal; low Vpost, indicating 230 

a lack of vegetation after the earthquake; and high Pt, due to a large variance between pre-event and post-event NDVI 

distributions. The likelihood that a pixel contains a landslide should increase with Pt (range: [0,1]) and decrease with dV (range: 

[-1,1]) and Vpost (range: [0,1]). Pixels with high NDSI could easily be misclassified as landslides but are instead more likely to 

be snow covered and thus should be classified as such. We thus exclude snow-dominated pixels where mean post-earthquake 

NDSI (Spost) exceeds a threshold (Tsnow), as well as pixels where median post-earthquake NDVI exceeds that pre-earthquake 235 

(i.e., positive dV). 

3.2 ALDI classifier implementation and data pre-processing 

We implement ALDI and perform all pre-processing steps within Google Earth Engine (Gorelick et al., 2017) because: 1) it 

hosts an extensive Landsat archive and provides efficient access to large volumes of freely available satellite data; 2) it provides 

both a toolkit of pre-compiled algorithms for image processing and cloud computing resources to run these algorithms; and 3) 240 

it is an open access platform so that both the data and the algorithms used here are widely accessible and reproducible (source 

code available in Supplementary Information). 

The objective of pre-processing is to generate four layers: dV, the change in NDVI before and after the trigger event; Vpost, the 

time-averaged post-event NDVI; Spost, the post-event NDSI; and Pt, the probability that pre- and post-event NDVIs are drawn 

from different distributions. These layers should synthesise the time series of available imagery from multiple sensors 245 

minimising bias due to the sensor, the influence of clouds, and seasonal vegetation changes. 

We use time series of NDVI calculated from Landsat 5, 7 and 8 imagery following ‘top of atmosphere’ correction (Chandler 

et al., 2009) to adjust for radiometric variations due to solar illumination geometry (angle and distance to Sun) and sensor 

specific gains and offsets. Sentinel 2 data would offer additional gains in terms of both spatial and temporal resolution of data 

but are not available for any of our case study events and thus cannot yet be evaluated within the same framework. Landsat 8 250 

sensors aggregate red and near infra-red reflectance over slightly different frequency bands to Landsat 5 and 7 but their central 

frequencies vary by <4% between sensors and by >20% between bands (Table 1).  

The time series is split into two ‘stacks’ of images, those before the trigger event and those after it (Figure 1b). The duration 

of these time series (and thus length of stacks) reflects a trade-off between shorter durations, which limit the sample size, and 

longer durations, which include landscape changes unrelated to the earthquake. We remove ‘cloudy’ pixels from each stack 255 

using the GEE simple cloud score exceeding a tuneable threshold (Tcloud) where stricter thresholds remove more cloudy pixels 
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but also incorrectly remove more cloud-free false positives (GEE, 2018). The number of images in each stack is controlled by 

the stack lengths and cloud threshold introducing three tuneable parameters to be calibrated.  

To account for seasonal vegetation change, NDVI values for each pixel in the pre- and post-earthquake stacks are extracted as 

a time series (Figure 1a) and binned based on the month in which the image was acquired. Monthly bins are used since they 260 

are generally long enough to contain data in every bin (even after removal of cloudy pixels) but short enough to capture 

seasonal changes. We calculate median NDVI for each monthly bin, choosing median rather than mean since it is more robust 

to outliers (Figure 1c). We difference the monthly median values prior to and after the trigger event, generating a distribution 

of differences (Figure 1c). From that distribution, we calculate the mean monthly NDVI difference, dV, and the mean of the 

post-event monthly NDVI, Vpost. We then evaluate the likelihood that the mean monthly NDVI difference differs significantly 265 

from zero using a pairwise t-test to calculate Pt. A similar procedure is applied to the pixel-wise NDSI values to calculate the 

mean of the post-event monthly NDSI, Spost. This allows us to construct maps of the pixel-wise values of dV, Vpost, Spost and Pt 

(Figure 1d) and thus to evaluate equation 4. The full routine runs in GEE in less than 30 minutes for an area of ~104 km2 (c. 

107 pixels). 

3.3 Performance testing 270 

We evaluated ALDI performance in terms of its ability to identify landslides from manually mapped inventories since these 

are widely accepted as the most accurate method to identify landslide locations. For each earthquake inventory we defined a 

study area based either on the study area defined by the manual mappers (e.g., excluding areas where cloud or snow cover 

hampered manual mapping); or on a convex hull that bounds the landslide inventory.  

ALDI is a relative measure of the confidence with which a pixel is identified as a landslide. To evaluate this measure against 275 

a landslide map it must be converted into a binary classification by thresholding the classification surface. The benefit of a 

given classification can then be quantified in terms of success in classifying positive (landslide) and negative (non-landslide) 

outcomes on a pixel-by-pixel basis. Thresholding the classification surface is a difficult exercise involving a trade-off between 

sensitivity, the fraction of the landslides that should be captured (also known as the true positive rate, TPR - the number of 

true positives normalised by all positive observations); and specificity, the number of false positives that should be allowed in 280 

doing so (also known as the false positive rate, FPR - the number of false positives normalised by all negative observations). 

In practice, this threshold is often set by external requirements in terms of a desired sensitivity or specificity, but these 

requirements can vary considerably between users and applications.  

Receiver operating characteristic (ROC) curves provide a more complete quantification of the performance of the classifier 

(e.g., Frattini et al., 2010). The ROC curve is constructed by incrementally thresholding the classifier and evaluating true and 285 

false positive rates at different threshold values to generate a curve where the 1:1 line reflects the naïve (i.e. random) case. The 

area under the curve (AUC) tends to 1 as the skill of the classifier improves towards perfect classification and to 0.5 as the 

classifier worsens towards the naïve (random) case. The strength of AUC is that it avoids the need to threshold the classifier 
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and is widely used, enabling comparison with other landslide detection methods; its main weakness is that it is difficult to 

interpret in absolute terms. What AUC constitutes ‘good’ performance? 290 

In our case, we seek to establish whether automated detection performance is such that it can be used as an alternative to 

manual mapping. However, it is difficult to compare ALDI against manual mapping because manual mapping is itself being 

used as the ‘ground truth’ in the absence of a better alternative. To address this, we first test the agreement between manual 

inventories in terms of true and false positive rates. TPRI1-2 indicates the fraction of landslides in inventory I1 that are also 

predicted by I2 and FPRI1-2 indicates the fraction of non-landslide pixels in I1 that are ‘incorrectly’ identified as landslide 295 

pixels by I2.  

ALDI performance can then be compared against one of the manual maps as a competitor with the other manual map used as 

the check dataset. To enable the comparison, ALDI must first be thresholded to generate a binary classifier with the same FPR 

as the competitor inventory with respect to the check inventory. The ability of ALDI to successfully identify more landslide 

pixels than the competitor inventory can be calculated from the difference in their true positive rates, TPRdiff: 300 

𝑇𝑃𝑅𝑑𝑖𝑓𝑓 = 𝑇𝑃𝑅𝐴𝐿𝐷𝐼 − 𝑇𝑃𝑅𝐶𝑜𝑚𝑝 ,   𝐹𝑃𝑅𝐴𝐿𝐷𝐼 = 𝐹𝑃𝑅𝐶𝑜𝑚𝑝         (5) 

where: TPRALDI and FPRALDI are the ALDI true and false positive rates respectively, both calculated from the check inventory; 

and TPRComp and FPRComp are the true and false positive rates for the competitor inventory, all calculated with respect to the 

check inventory. The magnitude of TPRdiff indicates the similarity in performance while the sign indicates the best performer 

(positive values indicate that ALDI out-performs manual mapping and vice versa). The strength of this approach is that it 305 

allows direct comparison between automated and manual mapping; its weakness is that it imposes a single arbitrary threshold 

on the classifier based on the FPR of the competitor dataset. In addition, we express spatial mapping error between manual 

inventories as the ratio of the intersection of the two maps to their union. This is equivalent to the ‘degree of matching’ (Carrara 

et al., 1992; Galli et al., 2008) and can be interpreted as the percentage of total mapped landslide area that the inventories have 

in common. 310 

3.4 Parameter calibration and uncertainty estimation 

The ALDI landslide classifier has seven tuneable parameters: cloud threshold (Tcloud), pre-event stack length (Lpre), post-event 

stack length (Lpost), snow threshold (Tsnow), and the three exponents (,  and ) that control the weighting assigned to the Vpost, 

dV and Pt layers respectively. Calibrating the parameters and estimating the associated uncertainty is important because the 

parameters are difficult or impossible to set a-priori and because we seek to develop a general model that can be applied to 315 

new landslide events not examined here. Our calibration seeks to optimize classifier performance evaluated by comparing the 

classifier to 11 manually mapped landslide inventories using the performance metrics described in Section 3.3. 

We calibrate ALDI parameters using one-at-a-time calibration for parameters that are internal to the GEE routine (Tcloud, Lpre, 

Lpost), since these parameters are well constrained (in the case of Tcloud and Lpost) or have a limited number of possible values 

(in the case of Lpre and Lpost). We use an informal Bayesian calibration procedure (e.g., Beven and Binley 1992) for parameters 320 

used in equation 4 (Tsnow ,  and ) since these parameters are less well constrained but evaluation of equation 4 is 
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computationally cheap. We calibrate Lpre, Lpost, and Tcloud, one-at-a-time, working from the most to least sensitive parameter 

for each earthquake event and then checking for interaction between parameters. For each GEE run in the one-at-a-time process 

we run 500 simulations of equation 4 with its parameters (Tsnow ,  and ) randomly sampled from a uniform probability 

distribution across a parameter range wide enough to capture the optimum performance. 325 

We examine Lpost of up to five years because vegetation typically begins to re-grow over this timescale, and Lpre of up to ten 

years because we expect that other landscape changes will begin to disrupt the pre-event signal at longer timescales. In both 

cases we examine only integer year values to ensure consistent sampling within the monthly bins. We use the full range of 

NDSI values for Tsnow ([0,1]) and cloudscore values for Tcloud ([0,1]). For the three exponents, we use zero for the lower bound 

and iteratively refined the upper bound to ensure that optimum performance at any site is found to be within the range. 330 

We perform the calibration for individual earthquakes to estimate the optimum classification skill that could be obtained when 

calibrating on all the check data. We then combine the best 20 parameter sets (measured in terms of AUC) from each earthquake 

into a global parameter set. To account for parameter interaction within a set we retain parameter sets as 7-element vectors. 

To ensure that each manually mapped landslide inventory is given equal weight as a check dataset we calibrate to each in turn 

taking 7 parameter sets from calibration to each of the three Gorkha inventories, and 10 from each of the two inventories at 335 

the other sites.  

Finally, we perform a holdback test in which we test ALDI for each site using the global parameter set but holding back the 

20 parameter sets that were derived from the site at which testing is being performed. In this test the parameters used to generate 

ALDI are un-influenced by the specific behaviour of the test site – a proxy for ‘blind’ application of the classifier to future 

events. 340 

3.5 Landslide size 

Landslide hazard and landslide mechanics are both influenced by landslide size. Thus, a good landslide map would capture 

not only the locations of landslides (which can be captured by pixel-based presence/absence as in Section 3.3) but also their 

sizes. For manual mapping this information is generally captured automatically since landslides are mapped as discrete objects 

rather than on a pixel by pixel basis. However, automated classifiers like ALDI require additional steps to convert a continuous 345 

pixel-based classification surface to a set of landslide objects. First, we generate a binary prediction of landslide presence or 

absence by thresholding the continuous ALDI. Threshold choice is non-trivial and encodes an implicit weighting of the 

importance of TPR and FPR. We seek to match the weightings that characterise current practice in landslide mapping by 

thresholding ALDI at a value that generates a FPR equal to that generated by manual mapping, though we note that manual 

mapping tends to be characterized by conservatively low FPR (e.g. Table 3). Second, we convert the binary landslide map to 350 

a set of landslide objects by identifying connected components at the 30 m resolution of the Landsat imagery (Haralick and 

Shapiro, 1992). Finally, we calculate the area of individual landslide objects from the number of pixels in each object (cluster). 

This connected components clustering is one of the simplest of many possible clustering algorithms. Thus, we examine whether 

any misfit in size distributions is due to the patterns of identified landslides or to the clustering algorithm skill by converting 
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manual landslide maps to binary grids at 30 m resolution, performing the same connected component clustering, and 355 

calculating the area of each cluster. The resultant size distributions are compared against one another and against those 

generated directly from the mapped landslide polygons. 

4 Results 

4.1 Spatial agreement: Gorkha case study 

We first illustrate our approach using the 2015 Gorkha earthquake, where three manual inventories are available, and then 360 

consider the other five earthquakes introduced in Section 2. All three manual inventories for the Gorkha earthquake show an 

elongated cluster of landslides extending from northwest to southeast (Figure 2a) that coincides with the area of steep slopes 

that experienced the most intense shaking. However, when the maps are compared at a finer scale they differ considerably 

(Figure 2c,e). In some cases, one mapper has identified a landslide but one or both of the others have not (e.g., location A in 

Figure 2e). Some, but not all, of these missed landslides can be attributed to areas where imagery was unavailable or where 365 

the ground was obscured by cloud (shown as grey or green areas in Figure 2c). In other cases, mapped landslides overlap but 

their size and/or shape differ, due either to differences in interpretation of landslide boundaries (e.g., location B in Figure 2e) 

or to the georeferencing of the underlying imagery from which the landslides were mapped. Georeferencing differences seem 

particularly likely to explain mapped landslides of very similar size and shape that are offset by small distances (e.g., location 

C in Figure 2e), or appear warped relative to one another so that their outlines only partially overlap (e.g., location D in Figure 370 

2e). 

The ALDI classifier applied to the Gorkha earthquake captures the broad spatial pattern of mapped co-seismic landslides with 

large patches of high ALDI values, and thus high classification confidence, corresponding to clusters of mapped landslides 

(Figure 2b). However, there are also a number of false positives in the south and west of the study area. A detailed look at a 

subsection of the study area suggests that most of the landslides that are included in both inventories overlap areas of high 375 

ALDI values (Figure 2d-e). In addition, areas of high ALDI values overlap many of those landslides identified by one inventory 

but not the other (Figure 2e). In many cases the shape of the high-ALDI zone closely follows that of the mapped landslide 

(Figure 2e). In other cases, patches of high ALDI values have typical landslide morphology but are not in either inventory 

(e.g., location E in Figure 2e), raising the question of whether these should be considered genuine classifier false positives or 

are in fact landslides missed in all three manual maps. Given that each inventory misses landslides identified by another, this 380 

possibility cannot be excluded. In other cases, the patches of high ALDI values have a size and/or shape that suggests that they 

are misclassifications. These may be due to cloud, shadow, snow or other landscape changes not associated with landslides 

(e.g., crop harvesting, river channel change, building construction). 
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4.2 ALDI calibration: Gorkha case study 

In this section, we seek to establish the best possible ALDI performance when parameters can be optimised to a single study 385 

site and identify the influence of parameters on that performance, both in terms of sensitivity to the parameter and preferred 

range for the parameter. We illustrate this using the Gorkha earthquake, calibrating ALDI’s seven tuneable parameters 

(columns A-G in Figure 3) to optimise agreement with two of the manually mapped landslide inventories measured using our 

two performance metrics (rows in Figure 3). The results are visualised in Figure 3 using dotty plots (after Beven and Binley, 

1992): a matrix of scatter plots where each subplot shows model performance (y-axis) against a parameter value (x-axis). The 390 

histogram above each scatter plot shows the frequency distribution of parameter values for the best 50 model runs for that 

metric and check dataset. 

All the scatter plots in Figure 3 show wide scatter in performance for a single value of any given parameter, indicating that the 

model is sensitive to multiple parameters. However, the key feature of each plot is the upper bound on ALDI performance for 

a given parameter value, and its sensitivity change in that parameter. This upper bound can be interpreted as the best possible 395 

ALDI performance at value x of parameter A when all other parameters are given flexibility to optimise. Plots where this upper 

bound is near horizontal suggest limited influence of a particular parameter and are accompanied by broad histograms. Narrow 

peaks in a plot’s upper bound indicate that good model performance requires that parameter to be set within a narrow range 

with performance degrading rapidly as values depart from this range independent of other parameter values. In the following 

paragraphs we examine the influence of each parameter in turn (Figure 3). 400 

Setting the pre- and post-earthquake stack lengths (Lpre and Lpost respectively) involves a trade-off between: errors caused by 

landslides (or other landscape changes) not associated with the earthquake, if the stack is too long; and errors caused by cloud 

cover, if the stack is too short. For the Gorkha earthquake, ALDI performance is most sensitive to Lpost, indicated by the steep 

gradient in upper bound performance across all metrics and for all check datasets (Figure 3, column G). For all metrics and 

datasets, a post-earthquake stack length of only one year produces the best performance. This may be because longer stacks 405 

are more likely to include other landscape changes after the earthquake that disrupt the signal, such as post-seismic landslides 

or re-vegetation of co-seismic landslides.  

ALDI includes a snow mask that only allows landslides to be identified in pixels where NDSI is lower than the snow threshold 

(Tsnow). ALDI performs well (i.e. <20% from optimum) for Tsnow values ranging from 0.1 to 0.9 (Figure 4, column D). For 

TPRdiff the best values of Tsnow are 0.2-0.4 with a rapid decline in performance as Tsnow is reduced and a slow decline as it is 410 

increased (Figure 4, panels D1-2 and D3-4). This suggests that snow rarely causes false positives even when little effort is 

made to remove it, but that an overly conservative snow threshold results in landslides being misclassified as snow. The AUC 

metric behaves similarly to the other two metrics with a larger performance reduction at low Tsnow values and reduced 

performance reduction at high Tsnow values (Figure 4, D5-6). This reflects the increased cost of an overly-conservative mask at 

less conservative ALDI thresholds. The snow mask is useful in removing false positives but unhelpful when it masks landslide 415 

pixels that have been incorrectly identified as snow. 
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The : ratio controls the influence of change in NDVI (dV) relative to mean post-earthquake NDVI (Vpost). ALDI is thus 

dominated by dV at higher ratios, and by Vpost at lower ratios. There is a clear optimum within the parameter space and a large 

reduction in performance away from this optimum indicating that both layers (dV and Vpost) are important components of the 

classifier (Figure 3, column B). Best performances are found in the range : = 3-4 for TPRdiff and in the range : = 10-20 420 

for AUC, suggesting that more weight needs to be given to dV to successfully identify landslides, particularly when bulk 

performance over the full ROC curve is of primary concern.  

The : ratio controls the influence of change in NDVI (dV) relative to the (t-test derived) probability that the values in the 

post event stack are significantly different from the pre event stack (Pt). ALDI performance is sensitive to this parameter for 

TPRdiff, but not AUC, which varies by <3% across the full parameter range (Figure 3, column C). Pt clearly adds more value 425 

than dV for the Gorkha case study: performance worsens by ~79% for TPRdiff when dV rather than Pt is used. However, best 

performances are found within the parameter space and exclusion of either layer results in performance losses of >14% for Pt 

or >4% for dV indicating that both layers add value and should be retained. Optimum performance always involves : < 1, 

suggesting that: 1) NDVI difference should be given less weight than the more complete t-test derived probability; and 2) the 

additional information on pixel variability provided in the t-test does adds considerable value to ALDI for this site.  430 

Optimum parameters for the Gorkha study site differ slightly between performance metrics (compare histograms down 

columns in Figure 3). This reflects the different focus of the metrics, where TPRdiff gives the strongest weight to very 

conservative (i.e. low FPR) classification thresholds (Figure 3, rows 1-2), and AUC weights all classification thresholds equally 

(Figure 3, rows 5-6). In general, the parameters to which ALDI performance is most sensitive are also those for which optimum 

values are most robust to changes in check dataset or performance metric. There is negligible change in optimum values for 435 

Lpost and Tsnow across the range of metrics and datasets. : and : are both broadly comparable between metrics although in 

both cases there is a shift towards higher optimum values for AUC, indicating that for this metric NDVI difference increases 

in importance (noting that the improvement is always <3%). : has a progressively less clear optimum as metrics become 

more generalised (from TPRdiff to AUC) indicating reduced parameter sensitivity for AUC. Tcloud and Lpre have larger changes 

in optimised parameters, though the sensitivity to these changes is small in performance terms (Figure 3 columns 5-6). 440 

Optimum Tcloud is 0.7 for TPRdiff but 0.5 for AUC, optimum Lpre is in the range 2-5 for TPRdiff and 5-10 for AUC. ALDI 

performance is insensitive to , varying by <10% across the parameter range for all metrics, generating a broad histogram of 

best-performing parameter values and showing large shifts in optimum value depending on both the metric and the dataset 

used to assess performance (Figure 3, column A). 

4.3 ALDI calibration: global comparison 445 

We focus our global comparison on the AUC performance metric. Other metrics produce very similar results and can be found 

in the supplementary information (Figures S1-S6). Figure 4 shows: that optimum values for a given parameter differ between 
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sites; that sensitive parameters at one site are usually sensitive at others; and that absolute performance differences between 

inventories at a site can be large but the trends are generally similar for different inventories at the same site. 

ALDI is sensitive to Lpost for all sites but with trends that differ between sites: for Haiti and Gorkha one year is best, two years 450 

is reasonable and three years is poor; for Kashmir and Wenchuan one year is best but two also gives reasonable results; for 

Aisen five years is best and one year is particularly poor (Figure 4 column G). An Lpost of two years generally results in fairly 

good performances for all five sites.  ALDI is sensitive to Tsnow in 3/5 sites and particularly sensitive for Aisen, but in all cases 

Tsnow of 0.5-0.8 results in performances that are close to, if not, optimum (Figure 4, column D). ALDI is only weakly sensitive 

to Lpre for all sites and with subtly differing trends: for Kashmir three years is best, for Wenchuan and Haiti 10 years is best 455 

and for Aisen and Gorkha best performances are in the range of five to 10 years (Figure 4, column F). However, the trends are 

not linear and an Lpre of five years generally results in fairly good performances for all five sites. ALDI is generally insensitive 

to Tcloud across the range 0.3-0.7 with best performances consistently found at 0.5 though these are at most 10% better than 

those for other values in the range (Figure 4, column E). ALDI is insensitive to  alone, but is strongly sensitive to : and 

weakly sensitive to : at all sites (Figure 4, columns A-C) with best performances found for : in the range 1-100.  460 

ALDI application would be both faster and simpler if single optimum values could be used for the three parameters that define 

compilation and treatment of image stacks within Google Earth Engine (Tcloud, Lpre, Lpost). Our site by site calibration suggests 

that it is possible to find single values for these parameters that result in good performance for all study sites (Figure 4). This 

is the case when the cloud threshold Tcloud is 0.5, the pre-earthquake stack length Lpre is 5 years, and the post-earthquake stack 

length Lpost is 2 years. We also examined performance when these parameters were allowed to vary but found that the 465 

performance improvement for the global parameter set was negligible. 

To examine similarity between locally optimised parameters and compare them to a global set of parameter sets we first 

identified the best 96 parameter sets for each study site, using AUC as the performance metric (Figure 5). To generate the 

global parameter sets we held Tcloud, Lpre and Lpost constant at 0.5, 5 years and 2 years respectively; then, treating the remaining 

parameter sets as 4-element vectors, we sampled the best 20 parameters from each site; finally, we generated a holdback 470 

parameter set for each site by removing that site’s parameters from the global set. Locally optimised parameter sets (grey 

histograms in Figure 5) are broadly consistent with the global set (blue histograms) with a small number of exceptions: Tsnow 

should be set lower for Kashmir and higher for Aisen, : should be set higher for Kashmir and : set lower for Gorkha. 

These differences are accentuated in the holdback distributions (the black outlined histograms) because the divergent local 

parameter values are stripped from the set pulling the distributions away from their local optima. We would expect larger 475 

performance degradation from local to global to holdback parameter sets at sites where these distributions are more different. 

ALDI with locally optimised parameters always out-performs the global parameters and the global parameters always out-

perform the holdback parameters (Table 3). The difference between local and global parameters is generally larger than 

between global and holdback parameters. In fact, performance reduction from global to holdback parameters is always <1% 

for AUC. This indicates that the five study sites provide an adequately varied calibration set to enable generation of a general 480 

parameter set that is not overly influenced by any one site. This is encouraging for future ‘blind’ ALDI application. However, 
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the difference in performance between local and global parameters shows that local optimisation can improve ALDI 

performance in terms of AUC by up to 9% (and by 2% on average). In three cases, one for Kashmir and two for Gorkha, local 

optimisation improves ALDI to the point where it is no longer out-performed by the manually mapped competitor inventory 

but instead out-performs it. This is somewhat consistent with the observed divergence of locally optimised parameter 485 

distributions from the global distribution at these sites (Figure 5). However, it likely also reflects the broadly similar 

performance (i.e. skill) of ALDI and manual mapping at the sites (Table 3). 

4.4 Spatial agreement: global comparison to manual mapping 

Spatial agreement between manual landslide inventories is surprisingly low not only for the Gorkha study site shown in Figure 

2 but across all sites. TPRs range from 0.08-0.8 indicating that at best 80% and at worst 8% of the landslide area mapped by 490 

one inventory is also identified as a landslide by a second test inventory (Figure 6a and Table 3). FPRs range from 0.0003-

0.03, indicating that at best 0.03% and at worst 3% of the area that is identified as non-landslide in one inventory is instead 

identified as a landslide by a second test inventory. FPRs are more than an order of magnitude lower than TPRs for two reasons: 

1) landslide density is low, so there are few positives (TP+FN) and many negatives (TN+FP); these are the denominators of 

TPR and FPR, respectively, amplifying TPR and damping FPR; and 2) landslide mappers tend to be conservative, mapping 495 

only features that they are confident are landslides. TPRs and FPRs are positively correlated but with considerable scatter 

(Figure 6a). In some cases manual maps agree quite closely: for example, the inventories of Gorum et al. (2013) and Harp et 

al. (2016) for Haiti (HGH and HHG) or those of Zhang et al. (2016) and Watt for Gorkha (GZW, GWZ). These cases have a 

relatively high TPR given their FPR and plot towards the top left of the point cloud in ROC space (Figure 6a). In other cases 

the agreement is weaker, such as between the inventories of Li et al. (2014) and Xu et al. (2014) for Wenchuan (WLX, WXL) or 500 

those of Saito et al. (2007) and Basharat et al. (2016) for Kashmir (KSB, KBS). There is a symmetry to the inventory comparison 

because each inventory takes a turn as the competitor dataset (to which ALDI is being compared) and as the check dataset 

(against which both are evaluated). As a result, a single pairwise comparison results in two points in Figure 6a reflecting the 

switching of roles. The three-way comparison for the Gorkha earthquake results in three pairwise comparisons and six points. 

When one inventory is considerably more complete and less conservative then the separation between pairs of points will be 505 

large (e.g. Watt and Zhang for Gorkha). Zhang et al. (2017) reported, in their metadata, that their inventory is incomplete and 

focusses on the largest landslides, while that of Watt was more complete and less conservative. As a result Zhang et al. (2016) 

successfully identified only 10% of the landslide pixels identified by Watt but identified only a tiny fraction (<0.1%) of the 

study area as landslides when Watt considered that they were not (GZW in Figure 6a). Conversely, Watt’s inventory successfully 

identified 80% of the landslides identified by Zhang et al. (2016), but also identifies a further 1% of the study area as landslides 510 

that were not identified as such by Zhang et al. (2016) (GWZ in Figure 6a).  

To evaluate ALDI performance relative to manual mapping, we compare the ability of ALDI to successfully identify more 

landslide pixels in one (check) inventory than another (competitor) inventory when ALDI is thresholded to reproduce the FPR 

of the competitor inventory. This TPR difference (TPRdiff) is shown as a red line in Figure 6b-f; positive differences indicate 
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that ALDI outperforms manual mapping and vice versa. ALDI outperforms manual mapping in the majority of cases when 515 

parameters are locally optimised (10 of 14 cases, Figure 6 and Table 3) and is comparable to manual mapping when a single 

global parameter set is applied to all study sites (8 of 14 cases). Performance is only slightly reduced when the test site is held 

back from the global optimisation and ALDI continues to outperform manual mapping in 8 of 14 cases. 

ALDI performs better at some sites than others, with performances at Aisen and Gorkha particularly good (Table 3). 

Performance is poor for Haiti, both in absolute terms and relative to the manual mapping. For AUC, an indicator of absolute 520 

performance, ALDI performance for the Haiti case is ranked 10th-11th of 14 (where the range results from combining local 

global or holdback tests). Relative to manual mapping, ALDI correctly identifies 51-74% fewer landslide pixels for the same 

FPR. Explanations for these performance differences are discussed in Section 5.4. ALDI in Wenchuan performs only 

moderately in absolute terms, with ranked performances in the range 9th to 12th out of 14 for AUC, but out-performs manual 

mapping (1st and 4th for TPRdiff) as a result of the relatively poor agreement between manual maps for the site. Kashmir has 525 

very marked differences in ALDI performance depending on the test dataset (all <4th of 14 for Sato et al. (2007); all >9th of 14 

for Basharat et al. (2016)), illustrating the difficulty of interpreting performance relative to check data when the check data 

themselves contain errors of similar magnitude to the data being tested. 

4.5 Size distributions 

Probability density functions for landslide size in terms of the area of manually-mapped landslide polygons (Figure 7a-e) 530 

follow a consistent distribution with a roll-over and a heavy right tail that is approximately linear in logarithmic space but that 

usually has positive (convex up) curvature or a roll-off at very large areas. These characteristics have already been widely 

reported both for the study inventories in particular (e.g., Gorum et al., 2013; Li et al., 2014; Roback et al., 2018) and for many 

other landslide inventories worldwide (e.g., Tanyas et al., 2019). Different inventories for the same study site show broadly 

consistent scaling in their right tail but tend to differ markedly in the location of the roll-over, modal size, degree of curvature 535 

in their right tail and the location (and presence) of a roll-off for very large areas (e.g., Figure 7a, d and e). These differences, 

and their possible explanations, have also been widely reported for these and other sites (see review by Tanyas et al., 2019). 

The size distributions derived from ALDI and those from resampled manual mapping generally exhibit a broadly similar right 

tail to those of the manually mapped distributions. Both sets of distributions have a heavy right tail that closely approximates 

a power law, and both have similar scaling (i.e. slope in logarithmic space) in that right tail. However, these grid-based 540 

distributions, which reflect the sizes of clustered landslide-affected areas (rather than the size of landslide objects themselves) 

are clearly different from those derived from manual mapping. They lack the roll-over at small areas, the positive curvature, 

and the roll-off at very large areas. These differences can be explained in terms of amalgamation and censoring. Amalgamation 

of multiple neighbouring landslides increases the frequency of large landslides, fattening the right tail. Re-sampling to a 30 m 

grid makes it impossible to record landslides smaller than a single pixel (i.e. 900 m2), censoring them from the size distribution. 545 

The application of a ‘majority area’ rule in identifying a pixel as ‘landslide affected’ enhances the frequency of landslides that 

are small but above the censoring threshold. For example, a landslide with an area of 500 m2 contained within a single pixel 
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would result in a resampled area of 900 m2; a landslide with an area of 1000 m2 split evenly between two pixels would result 

in a resampled area of 1800 m2. 

There is good agreement between cluster size distributions for landslide pixels classified with ALDI and those identified by 550 

resampling manual maps. This is the fairest evaluation of the classifier in its current form since no attempt has been made to 

identify or disambiguate landslide objects. However, the similarity in both mapped and classified cluster size distributions 

between sites suggests that this may be a somewhat blunt tool in evaluating classifier performance. 

5 Discussion 

5.1 The problem of testing against check data of only comparable quality 555 

In the TPRdiff cross-comparison the ALDI classifier out-performs 8 of 14 inventories when tested against a second inventory 

indicating that it is more skilful than at least one of the inventories (either the check or competitor inventory). However, we 

are unable to a) conclude whether it is better than one or both inventories nor b) identify which inventory is better. This is 

because errors in a single inventory influence the result both when it is used as the predictor (i.e. as a competitor against ALDI) 

and the check dataset (against which both are evaluated). For four of the nine inventory pairs (Aisen; Wenchuan; Roback-560 

Watt, Gorkha; and Roback-Zhang, Gorkha) the globally calibrated ALDI is more similar to each inventory than the inventories 

are to one another. This indicates either: a) that both inventories contain some errors and the ALDI contains fewer than either 

of them; or b) that ALDI contains similar errors to at least one inventory. In the latter case, pixels misclassified as landslides 

in one inventory (but correctly identified in the other) would also be misclassified as landslides by ALDI. 

5.2 Performance differences in manual mapping reflect inventory errors, not solely mapping errors 565 

Our findings on the large locational mismatch between co-seismic landslide inventories are initially surprising, given the 

widespread assumption that such inventories represent a ‘ground truth’ and the limited attempts to propagate these errors into 

hazard maps, classification tests, process inferences, or landslide rate estimates. However, the limited number of other studies 

that do quantify landslide inventory error all suggest very weak spatial agreement between landslide inventories (Ardizzone et 

al., 2002; Galli et al., 2008; Fan et al., 2019).  570 

The process of generating a landslide inventory from satellite imagery involves choosing which images to map from and how 

to post-process and georeference them before landslides can be identified and delineated by a human mapper. Thus, the 

comparison of two inventories is not a direct test of the consistency with which human mappers detect and delineate landslides 

but instead the consistency with which different research groups generate landslide inventory maps. Fan et al. (2019) tested 

uncertainty due to differential mapping choice and ability. They found that landslide inventories had an overlap of 67%-86% 575 

(and 76% on average) when comparing between mappers in the same team mapping from the same imagery. This differs 

considerably from both our own results (8-30% overlap, Table 3) and the other inventory comparisons (19-44% overlap). In 

these cases, the inventories being compared were published by independent research groups and were not only collected by 
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different mappers without collaboration but were generated from different sets of satellite images. For example, Roback et al. 

(2018) used Worldview imagery with high spatial resolution but which suffer from severe warping in the Gorkha study area 580 

due to the steep landscape and oblique look angles (Williams et al., 2018). Even if landslides were correctly identified in both 

sets of imagery, differences between inventories could be introduced during georeferencing. These differences could then be 

minimised with improved georeferencing though this itself is a difficult problem (Verykokou and Ioannidis, 2018). Figure 8 

shows evidence of the same problem for the Wenchuan inventories, where two sets of mapped landslides with strikingly similar 

patterns are offset by ~1 km. These georeferencing errors are difficult to attribute to a single inventory and appear to vary in 585 

magnitude and direction even over quite short length scales within an inventory (Figures 2 and 8). Thus, improved performance 

of ALDI relative to a particular inventory reflects an improved overall workflow rather than specifically the ability to identify 

landslides in images. 

5.3 Both agreement between manual inventories and ALDI performance differ depending on the property of interest 

(i.e. spatial agreement, total area, size distribution). 590 

The distinction between the ability of a human mapper to identify a landslide and that of a landslide inventory to identify 

whether a particular location is ‘landslide affected’ is important both for the debate around performance of machine vs. human 

vision and because some inventory properties (e.g., total landslide affected area or landslide size-frequency distribution), which 

are less sensitive to georeferencing error might not be affected in the same way. Disagreements in landslide size-frequency 

distributions for manually mapped inventories have already been reported, with most pronounced differences being in roll-595 

over location, and are usually ascribed to differences in image resolution (Galli et al., 2008; Fan et al., 2019; Tanyas et al., 

2019). 

There are, however, a number of applications in which the specific location of the landslide in geographic space is critical 

(e.g., landslide susceptibility modelling and hazard mapping). Our results suggest that for the majority of our case studies, the 

classifier-derived landslide inventory would be a more appropriate product to use in these cases. ALDI is better than at least 600 

one of the inventories in four of the five case studies (though which one is unclear). In the absence of information on which 

manual inventory is more accurate, the classifier-derived inventory can be considered the best available dataset (in terms of 

spatially explicit classification).  

Even in the case of susceptibility mapping, the impact of discrepancy between inventories may be less severe than the direct 

pixel-based comparison suggests. Sensitivity analyses for a range of locations and of landslide hazard and susceptibility models 605 

indicate that both the statistics of key causative factors (Milledge et al., 2019) and the resultant hazard maps (Ardizzone et al, 

2002) remain remarkably consistent between inventories despite considerable locational mismatch (i.e. <50% overlap between 

inventories).  
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5.4 Limitations to ALDI performance 

ALDI performance varies from site to site, with particularly good performances for Aisen and Gorkha, but particularly poor 610 

for Haiti. The overall poor performance for Haiti may reflect the drier conditions in the study area, which promote vegetation 

that is more difficult to differentiate from landslide scars or the higher degree of human influence on land cover, relative to 

other sites, which may result in more vegetation changes not related to landslides. ALDI can identify landslides only in areas 

where they result in a change in NDVI and will perform better in areas where this change is more pronounced (all else being 

equal). This will occur where pre-event NDVI is higher due to denser and/or more vigorous vegetation coverage, both of which 615 

result in a larger share of reflectance from leaves, with their more pronounced ‘red edge’ (the red to near infra-red reflectance 

change). Conversely, ALDI will likely perform poorly in areas with sparse vegetation such as the epicentral area of the 2010 

Sierra Cucapah earthquake (Barlow et al., 2015). 

Poor performance for Haiti in comparison with the manual mapping may be due to ALDI’s coarse 30 m resolution relative to 

the dimensions of the landslides in the study area. ALDI will identify a pixel as landslide affected only if the landslide occupies 620 

enough of the pixel to alter its spectral response, and will perform better when landslides occupy entire pixels, either because 

landslide boundaries coincidentally align with pixel boundaries or because landslides are large enough to occupy multiple 

pixels.  Given their elongate shape (Taylor et al., 2018), landslides with widths <30 m and areas <2,700 m2 (assuming L/W=3, 

75th percentile from Taylor et al., 2018) will be partially censored, with the degree of censoring increasing as width declines.  

Median landslide area in the inventories examined here ranges from 250 m2 for Haiti (Harp et al., 2016) to 19,000 m2 for 625 

Kashmir (Basharat et al., 2016), with medians less than 2,700 m2 in 4 of 14 inventories. Therefore, this censoring will strongly 

affect ALDI-derived inventories, particularly in areas with lower relief (such as Haiti), where smaller landslides are expected 

to be more common (Jeandet et al., 2019).  

Finally, poor performance for Haiti is also likely to reflect the limited number and quality of Landsat images acquired over the 

study area in the study period. ALDI used imagery from 2005-12 to identify landslides triggered by the Haiti earthquake and 630 

thus relies exclusively on Landsat 5 and 7 data (Landsat 8 launched in 2013). Both Landsat 5 and 7 are problematic for this 

study site and period. All the Landsat 7 data contain data gaps due to Scan Line Corrector (SLC) failure from June 2003 

onwards and only small amounts of Landsat 5 data for areas outside the USA were retained during this period, limiting archival 

imagery in some areas (see Figure S5 in Pekel et al., 2015). For Haiti the pre-earthquake stack is composed of 6 Landsat 5 

images and 205 Landsat 7 images and the post-earthquake stack of 16 and 91 images, respectively. Limited availability of 635 

Landsat 5 data at this site means that in some areas the classifier relies exclusively on Landsat 7 and is thus unable to calculate 

an ALDI value for pixels within the data gaps (these are visible as white stripes in the eastern half of Figure 9b). While some 

areas of high ALDI values show good agreement with mapped landslides, there are also large patches of high ALDI values 

with complex shapes that are uncharacteristic of landslides and that manual mapping shows as likely false positives (Figure 

9c).  640 
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Given these limitations to Landsat 5 and 7 derived imagery, it is perhaps surprising that ALDI performs so well in the Aisen 

case (where the stack extends from 2002-2009). This is likely due to the larger number of Landsat 5 images available for the 

study site (140 in the pre-earthquake stack and 46 in the post-earthquake stack) and to the location of the area of densest 

landsliding near the centre of a Landsat 7 image where data gaps related to SLC failure are minimised. The 2015 Gorkha 

earthquake is the only case study for which Landsat 8 data were available perhaps explaining the relatively good performance 645 

at this site and offering hope for application to more recent events.  

Sparse image data (associated with incomplete archiving of Landsat 5) and sensor problems (primarily SLC failure on Landsat 

7) from 2003-2014 suggest ALDI-based mapping in this period should be handled with care. However, the majority of our test 

earthquakes come from this period and we have demonstrated that even with these constraints, ALDI performs well for four 

of the five case studies both in absolute terms and relative to manual mapping. However, the Haiti case indicates that ALDI-650 

derived landslide classification cannot be uncritically accepted. This does not necessitate extensive manual mapping but could 

entail careful checking of the numbers of images in the pre- and post-earthquake stacks, the extent of Landsat 7-derived striping 

in the ALDI map, and the size and shape of the landslides in the ALDI-derived inventory. Small image stacks (particularly for 

Landsat 5), extensive striping, and large complex landslide shapes should all be treated as indicators of potentially poor ALDI 

performance. However, even when large image stacks are available for an earthquake-affected area, cloud cover can limit the 655 

number of usable observations per pixel within the pre- and post-earthquake stacks.  

ALDI can identify landslide-affected pixels with a high degree of skill (comparable to manual mapping) but is less skilful in 

identifying discrete landslides, as demonstrated by the difference in ALDI and manually mapped size distributions. As with 

Parker et al. (2011), additional steps are required to identify separate landslides (e.g., Marc et al., 2016). Calibration based on 

a small subset of manually mapped landslides followed by subsequent manual editing to remove false positives could result in 660 

a very good inventory in a fraction of the time associated with full manual mapping.  

5.5 Application of ALDI to future earthquakes 

Increased frequency and quality of optical imagery suggests that ALDI should perform well for future earthquakes. In 

particular, Sentinel 2 imagery can generate NDVI at 10 m spatial resolution (Table 1). The two Sentinel 2 satellites were 

launched between June 2015 and March 2017, and thus there is a limited stack of pre- or post-earthquake images available to 665 

date. The 2018 Hokkaido earthquake offers the best trade-off to date between pre- and post-event data, with a three-year pre-

event stack and a one-year post-event stack. As a test of the wider applicability of ALDI to future events, we ran ALDI using 

the global parameter set identified above, and evaluated its results against landslides mapped from aerial imagery by Wang et 

al. (2019). The results are extremely promising both at the scale of the entire epicentral area (Figure 9d and e), and of individual 

landslides, with few false positives, a large area under the ROC curve (0.94), and many landslides clearly delineated by a sharp 670 

break from high to low ALDI values (Figure 9f). 
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6 Conclusion 

Rapid derivation of landslide inventories after large triggering events remains a key research challenge. We have developed a 

parsimonious automatic landslide classifier, ALDI, that uses pre- and post-event stacks of freely-available medium-resolution 

satellite imagery. We test the classifier against multiple independent manually-mapped inventories from five recent 675 

earthquakes. Considering that manually-mapped inventories are typically assumed to be the ‘ground truth’ against which 

automatic classifiers are evaluated, we find that agreement between different manual inventories is surprisingly low (8-30% 

of landslide area in common). ALDI often identifies landslides in one inventory missed in the other and even identifies some 

candidate landslides not in either inventory but that have location and morphometric characteristics that strongly suggest they 

are true positives. 680 

We further find that ALDI can identify landslide locations with a level of skill that is equal to or better than manual mapping 

on a pixel by pixel basis. ALDI calibrated to mapped landslides at a site outperforms manual mapping in 10 of 14 cases (i.e. 

71%). The only cases where manual mapping performs better are: the two inventories for the 2010 Haiti earthquake, where 

the stack of available Landsat images is extremely limited; and the cross comparison of Zhang and Watt inventories for the 

2015 Gorkha earthquake, where strong agreement between inventories is the result of mapping from very similar satellite 685 

imagery. 

Even when using a global parameter set, ALDI outperforms manual mapping in 8 of 14 cases (57%) with 10 of 14 cases (71%) 

either performing better than manual mapping or within the uncertainty in manual mapping performance estimates. These 

results suggest that ALDI can be applied with considerable confidence to map co-seismic landslides in future earthquakes 

without the need for additional calibration. Holdback tests do not change either of these statistics and affect both performance 690 

metrics by less than 1% (AUC) or two percentage points (TPRdiff), suggesting that the set of earthquakes that we have used is 

large enough to develop a robust global parameter set. 

The size distributions for clusters of pixels that are classified as landslides both from manual and automated landslide 

classification are broadly similar, particularly in their heavy right tail. However, the classifier-derived inventories are 

fundamentally limited by the resolution of the imagery and their inability to disaggregate amalgamated landslides, so that an 695 

object-based approach is required to recover realistic size distributions. 

ALDI is fast to run, uses free imagery with near-global coverage and generates landslide information that is of comparable 

quality to that of costly and time-consuming manual mapping, depending on its intended use. Thus, even in its current form it 

has the potential to significantly improve the coverage and quantity of landslide inventories. However, its simplicity 

(performing only pixel-wise analysis) and parsimony of inputs (using only optical imagery) suggests that considerable further 700 

improvement should be possible. 

 

Code availability  

The Google Earth Engine code to run ALDI will be made available on Github (DavidMilledge/ALDI) on publication. 
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Figure 1: ALDI pre-processing steps. (a) Time series of NDVI values for a landslide-affected pixel (circled in panels b and d) before 

and after the trigger event, with cloud-free values shown as solid symbols. This time series is derived from a stack of NDVI images 920 
(b) and is used to calculate monthly median NDVI before and after the earthquake and their difference (c), which can be used to 

calculate dV, Pt and Vpost for every pixel in the study area (d). 
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Figure 2: Mapped landslides and the ALDI classifier for the Gorkha study site. a) Mapped landslides at the scale of the full study 925 
area with AOIs (the mapped area) shown in grey. Zhang refers to the inventory of Zhang et al. (2016), Roback to the inventory of 

Roback et al. (2018), and Watt to the inventory of Watt (2016). The yellow box shows the location of panels (b) and (c); b) ALDI 

values for the full study area with areas outside the AOI in grey; c) mapped landslides from the three inventories for a subset of the 

study area, with unmapped areas (masks) shaded green and grey (no mask was reported for Zhang et al., 2016). The yellow box 

shows the location of panel (e); d) ALDI values for the same subset of the study area shown in (c); e) detailed view of mapped 930 
landslides from the three inventories and ALDI values. Green labels indicate examples of: A) missed landslides, B) agreement 

between inventories, C) offset landslide outlines, D) warped landslide outlines, and E) landslides identified by ALDI but missed by 

manual mapping. None of the study area was masked in the mapping of Zhang et al. (2016). 
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 935 

Figure 3: Dotty plots and posterior parameter distributions for the Gorkha case study for the seven tuneable parameters associated 

with ALDI (columns) evaluated using two of the test datasets (Watt and Roback) and two performance metrics (rows): TPRdiff, the 

difference in TPR between ALDI and the competitor inventory at the FPR defined by the competitor inventory; and AUC, the area 

under the ROC curve, a more general indicator of classifier performance over the full range of FPRs. ‘Watt/Roback’ refers to using 

Watt as the check dataset and Roback as the competitor in row 1; ‘Roback/Watt’ refers to the converse in row 2. Watt is used as the 940 
check dataset in row 3, and Roback as the check dataset in row 4. Points plotting above the yellow line are results for the best 100 

parameter values. In each case the parameter distributions are for the best 100 parameter sets evaluated using the same metric and 

datasets as the dotty plot below it. Dotty plots for the other Gorkha inventories and for all other sites are given in the Supplementary 

Information. 
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 945 

Figure 4: Dotty plots and posterior parameter distributions for the seven tuneable parameters associated with ALDI (columns A-G) 

for the five study earthquakes (rows 1-5). Dotty plots show classifier performance evaluated using AUC, the area under the ROC 

curve. Blue or red colours indicate the inventory used as the check dataset, as shown to the right. Parameter distributions are for 

the best 100 parameter sets evaluated using the same metric. 
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 950 

Figure 5: Posterior parameter distributions for the four parameters external to Google Earth Engine after global optimisation (top 

row) and local optimisation for each earthquake. Rows 2-5 show posterior frequency distributions for each ALDI parameter 

following local optimisation (grey bars) and the holdback parameter set derived from the global set excluding locally optimised 

parameters (hollow bars).   
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 955 

Figure 6: a) TPR, FPR pairs for the 14 inventory cross comparisons. Open symbols are calculated from a pixel-based analysis at 30 

m resolution, solid symbols are calculated from an object-based analysis using mapped polygons. The grey line shows the naïve 

(random) 1:1 relationship. Note difference in x- and y-axis scales for this and all other panels; b)-f) ROC curves for ALDI for each 

case study. There are three ROC curves for ALDI evaluated against each check inventory (e.g., KSB) all with the same line style 

(solid or dashed). In every case the upper curve is from ALDI with locally optimised parameters, the middle curve (indicated with 960 
an arrowed end) is from ALDI with global parameters and the lower curve is from ALDI with holdback parameters. The global and 

holdback curves are indistinguishable in almost all cases. Red lines indicate the value of TPRdiff, the difference in TPR between 

ALDI and the competitor inventory when both are evaluated using the same check inventory. Legend acronyms indicate the study 

site (e.g., K) with the check and then competitor inventory labels as subscripts; see Table 3. 
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 965 

Figure 7: Empirical size distributions for manually mapped and classified landslides for the five case studies. Manually mapped pdfs 

are calculated from areas of mapped polygons, resampled pdfs are calculated from patch areas generated from the mapped polygons 

resampled to a 30 m grid, and classified pdfs are calculated from clustered pixel areas generated by thresholding the ALDI 

classification values. 
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Figure 8: Mapped landslides and ALDI classifier results for the Wenchuan study site. a) Mapped landslides at the scale of the full 

study area with AOIs shown in grey. Xu refers to the inventory of Xu et al. (2014), and Li to the inventory of Li et al. (2014). The 

yellow box shows the location of panels (b) and (c); b) ALDI values for the full study area with areas outside the AOI in grey. Color 

bar shown in panel (e); c) mapped landslides from the two inventories for a subset of the study area. The yellow box shows the 975 
location of panel (e); d) ALDI values for the same subset of the study area shown in (c); e) detailed view of mapped landslides from 

the two inventories and ALDI values. Thicker outlines in (e) indicate landslides of very similar geometry that are offset by ~1 km in 

the different inventories; the ALDI pattern suggests that the mapping of Xu et al. (2014) is more likely to be correctly georeferenced 

in this case.  

https://doi.org/10.5194/nhess-2021-168
Preprint. Discussion started: 8 July 2021
c© Author(s) 2021. CC BY 4.0 License.



37 

 

 980 

Figure 9: Mapped landslides and the ALDI classifier for the Haiti (left) and Hokkaido (right) study sites. a) Mapped landslides from 

Harp et al. (2016) in Haiti at the scale of the full study area with the associated AOI shown in grey; b) ALDI values for the full study 

area, the yellow box shows the location of panel c; c) ALDI values overlain by mapped landslides from Harp et al. (2016) for a subset 

of the study area; d) Mapped landslides from Wang et al. (2019) in Hokkaido at the scale of the full study area with the associated 

AOI shown in grey; e) ALDI values for the full study area, the yellow box shows the location of panel f; f) ALDI values overlain by 985 
mapped landslides from Wang for a subset of the study area. ALDI uses Landsat 5 and Landsat 7 for Haiti and Sentinel 2 for 

Hokkaido, both are gridded at 30 m resolution.  
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Table 1: Landsat and Sentinel image characteristics (Barsi et al., 2014; ESA. 2017b).  

 Landsat 5 and 7 Landsat 8 Sentinel 2 

Green (m) Band 2: 0.52-0.60  Band 3: 0.53-0.59 Band 3: 0.52-0.60 

Red (m) Band 3: 0.63-0.69 Band 4: 0.64-0.67 Band 4: 0.65-0.69 

Near infra-red (m) Band 4: 0.77-0.90 Band 5: 0.85-0.88 Band 8: 0.76-0.91 

Shortwave infra-red (m) Band 5: 1.55-1.75 Band 6: 1.57-1.65 Band 11: 1.51-1.70 

Spatial resolution (m) 30 30 10 

Revisit time (days) 16 16 5 

Operational life 1984-2013 (L5) 

1999-present (L7) 

2013-present June 2015-present (S2a) 

March 2017-present (S2b) 

 990 

Table 2: Parameters for Landsat simple cloudscore, equations 2a-f 

Threshold Minimum Maximum 

Blue (Eqn 2a) Rbmin = 0.1 Rbmax = 0.3 

Visible (Eqn 2b) Rvmin = 0.2 Rbmax = 0.8 

Infra-red (Eqn 2c) Rirmin = 0.3 Rbmax = 0.8 

Temperature (Eqn 2d) Tempmin = 290 Tempmax = 300 

NDSI (Eqn 2e) NDSImin = 0.6 NDSImax = 0.8 
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Table 3: Performance metrics for ALDI applied with the different parameter sets to predict landslides from each of the 14 inventory 

pairs. Abbreviated names for the inventory pairs indicate the case study with subscripts denoting first check and then competitor 995 
inventories (e.g., KSB denotes the Kashmir earthquake with Sato as the check inventory and Basharat as the competitor inventory). True 

positive rate (TPR) and false positive rate (FPR) are reported for both object-based analysis (in brackets), and pixel-based analysis at 30 

m resolution. Overlap indicates the percentage overlap between pairs of landslide inventories. Shading in right hand columns indicates 

relative performance within each column (i.e. for that metric and calibration) with linear colour scale from best (blue) to worst (red). 

Vertical blocks reflect different performance metrics: TPRdiff, the percentage difference in TPR between ALDI and the competitor 1000 
inventory when evaluated for that check inventory; and AUC, the area under the ROC curve. Columns within each block reflect different 

ALDI calibration strategies: local calibration optimised to both site and check inventory; global calibration using a compilation of the 

best parameter sets from all sites; and holdback calibration where parameter sets from the test site are excluded. Note that positive values 

of TPRdiff reflect cases where ALDI outperforms manual mapping while negative values reflect cases where manual mapping is better.  

 TPR [-] FPR [-]    TPRdiff [%]   AUC [-] 
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Kashmir (K)     
 

   
  

   

(KSB) Sato et al. (2007) Basharat et al. (2016) 0.58 (0.56) 0.029 (0.030) 
8.2  

30 26 27   0.94 0.93 0.93 

(KBS) Basharat et al. (2016) Sato et al. (2007) 0.09 (0.09) 0.002 (0.002) 
 

0.2 -7 -5   0.72 0.69 0.69 

Aisen (A)  

 

 

  

        

(AGS) Gorum et al. (2014) Sepulveda et al. (2010) 0.52 (0.52) 0.010 (0.009) 
29.7  

56 39 39   0.93 0.93 0.93 

(ASG) Sepulveda et al. (2010) Gorum et al. (2014) 0.4 (0.41) 0.006 (0.006) 
 

6 5 5   0.77 0.78 0.78 

Wenchuan (W)     

 

        

(WLX) Li et al. (2014) Xu et al. (2014) 0.35 (0.35) 0.026 (0.029) 
14.0  

36 26 27   0.87 0.85 0.85 

(WXL) Xu et al. (2014) Li et al. (2014) 0.19 (0.19) 0.011 (0.012) 
 

62 50 51   0.86 0.84 0.84 

Haiti (H)     

 

        

(HHG) Harp et al. (2016) Gorum et al. (2013) 0.24 (0.21) 0.001 (0.001) 
18.8  

-51 -74 -73   0.88 0.84 0.84 

(HGH) Gorum et al. (2013) Harp et al. (2016) 0.64 (0.62) 0.005 (0.007) 
 

-52 -62 -60   0.9 0.83 0.83 

Gorkha (G)     

 

        

(GWR) Watt (2016)  Roback et al. (2018) 0.27 (0.33) 0.004 (0.005) 
22.8  

22 1 1   0.92 0.92 0.92 

(GRW) Roback et al. (2018) Watt (2016)   0.42 (0.43) 0.008 (0.008) 
 

20 7 6   0.94 0.93 0.93 

(GRZ) Roback et al. (2018) Zhang et al. (2016) 0.1 (0.09) 0.001 (0.001) 
8.3  

30 -4 -3   0.92 0.90 0.90 

(GZR) Zhang et al. (2016) Roback et al. (2018) 0.49 (0.51) 0.004 (0.005) 
 

19 4 5   0.96 0.95 0.95 

(GZW) Zhang et al. (2016) Watt (2016)  0.11 (0.11) .0003 (.0003) 
11.1  

-28 -47 -47   0.92 0.92 0.92 

(GWZ) Watt (2016)  Zhang et al. (2016) 0.79 (0.80) 0.010 (0.010) 
 

-9 -17 -17   0.97 0.97 0.97 

  Median 0.38 0.006 14.0 
 

20 3 3   0.92 0.91 0.91 

  Mean 0.37 0.008 16.1 
 

10 -4 -3   0.89 0.88 0.88 
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